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Biosensor for human IgE detection using
shear-mode FBAR devices
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Abstract

Film bulk acoustic resonators (FBARs) have been evaluated for use as biosensors because of their high sensitivity
and small size. This study fabricated a novel human IgE biosensor using shear-mode FBAR devices with c-axis
23°-tilted AlN thin films. Off-axis radio frequency (RF) magnetron sputtering method was used for deposition of
c-axis 23°-tilted AlN thin films. The deposition parameters were adopted as working pressure of 5 mTorr, substrate
temperature of 300°C, sputtering power of 250 W, and 50 mm distance between off-axis and on-axis. The characteristics
of the AlN thin films were investigated by X-ray diffraction and scanning electron microscopy. The frequency response
was measured with an HP8720 network analyzer with a CASCADE probe station. The X-ray diffraction revealed (002)
preferred wurtzite structure, and the cross-sectional image showed columnar structure with 23°-tilted AlN thin films. In
the biosensor, an Au/Cr layer in the FBAR backside cavity was used as the detection layer and the Au surface was
modified using self-assembly monolayers (SAMs) method. Then, the antigen and antibody were coated on biosensor
through their high specificity property. Finally, the shear-mode FBAR device with kt

2 of 3.18% was obtained, and the
average sensitivity for human IgE detection of about 1.425 × 105 cm2/g was achieved.
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Background
In recent years, piezoelectric materials have been used in
surface acoustic wave (SAW) resonators [1-5] and film
bulk acoustic wave resonators (FBARs) [6-10] because of
their low cost, low weight, and good reproducibility. How-
ever, the SAW resonator has high insertion loss and poor
power handling capability. Hence, this study evaluated the
potential applications of FBARs for biosensors because
of their advantages, including low insertion loss, good
power handling, and small size. The FBAR devices were
constructed by a piezoelectric layer sandwiched between
two electrodes and attached to substrate with backside
cavity. Piezoelectric materials such as zinc oxide (ZnO)
and aluminum nitride (AlN) have been used in FBAR de-
vices for various applications [11-13] owing to their high
acoustic velocity, better quality factor, and high electro-
mechanical coupling coefficient. Besides, the piezoelectric
materials of ZnO and AlN can be combined with sili-
con technologies in semiconductor fabrication processes
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[14,15]. Moreover, the acoustic velocity of AlN is
10,400 m/s, and it suits application for FBAR devices.
The acoustic wave of a FBAR has two transmittance

modes: longitudinal mode and shear mode. In shear mode,
acoustic wave energy does not dissipate in a liquid envir-
onment [16]. The backside cavity of FBAR can be used
as the detection area for adsorbent matter. Under a mass
loading, a frequency shift would be resulted in the fre-
quency response of a FBAR [17]. The analysis methods
were used for biosensor in liquid and tiny mass detection
in air through the shear mode and longitudinal mode,
respectively. Thus, FBAR devices were fabricated and
constructed to evaluate their potential use in biosensors.
According to the medicine journal report, it is estimated

that as many as 1.4 billion people of allergy [18]. Hence,
the marketable merit of anti-allergic agent is calculated to
be 20 billion USD dollars [19]. The conventional detecting
allergy methods focus on testing the concentration of
immunoglobulins E (IgE) in human serum. The IgE in
human immune system was used to resist exterior germs
and virus, but overreactions of the human immune system
can cause allergies. Furthermore, the traditional detecting
allergy methods have some disadvantages such as time-
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consuming detecting process and large size and expensive
detecting instrument [20]. Therefore, this investigation
focuses on micro allergic sensor devices, due to the ad-
vantages, such as small size, low-cost, fast detecting process,
etc. Besides, the apparatus for evaluating the FBAR-based
sensor devices is shown in Figure 1a,b.

Methods
Fabrication of FBAR devices
In this study, the FBAR devices for biosensors application
were fabricated. Figure 2 showed the processes used to
fabricate the shear-mode FBAR devices. The silicon nitride
(Si3N4) was deposited on both sides of Si wafer by low-
pressure chemical vapor deposition (LPCVD) as the
supporting layer for the FBAR devices. The bottom elec-
trodes, piezoelectric thin films, and top electrodes sand-
wiched structure is patterned by the photolithography
process using four masking processes. The titanium (Ti)
and platinum (Pt) layers were deposited on Si3N4/Si
Si (100) Si3N4 Pt/T

CASCADE pro

Figure 1 The apparatus for evaluating the FBAR-based sensor device
structure as bottom electrodes by a dual-gun DC sputter-
ing system using 99.995% pure targets combined with first
mask and lift-off method. The distance between target and
substrate was fixed at 50 mm. As the base pressure was
pumped down to 1 × 10−6 Torr, the film growth was
carried out with working pressure of 3 and 1 mTorr for
Ti and Pt, respectively. Then the high-quality AlN piezo-
electric thin films were deposited on Pt/Ti layer using
reactive radio frequency (RF) magnetron sputtering with
off-axis deposition method. The Al target was 99.9995%
pure, and the distance between target and substrate was
fixed at 50 mm. As the base pressure was pumped down
to 5 × 10−7 Torr, the sputtering conditions were set as
working pressure of 5 mTorr, substrate temperature of
300°C, sputtering power of 250 W, and an off-axis to
on-axis distance of 50 mm. To expose the bottom elec-
trodes for electrical contact, AlN was wet-etched with
2.38% tetramethylammonium hydroxide (TMAH) using
a second mask at room temperature. The top electrode
i AlN Au/Cr

be station

s. (a) Schematic cross section view. (b) Front view.



Figure 2 The fabrication steps of FBAR devices.
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can be obtained by the third patterning process after
Pt/Ti was deposited on the AlN thin films. Finally, the
backside of the structure was etched by combining the
fourth mask and a 30% KOH solution to form the
detection area. Therefore, the fabrication of the FBAR
devices was then completed.
Characteristics measurement
The characteristics of AlN thin films, including crystal-
line properties, preferred orientation, and cross-sectional
morphologies were examined. The crystalline properties
and preferred orientation of the AlN thin films were deter-
mined by X-ray diffraction scanning between 20° and 60°
using a Siemens D5000 (Munich, Germany) with CuKα
radiation. The surface morphologies and cross sections of
AlN thin films were observed by field-emission scanning
electron microscope (FESEM, JEOL-6700; JEOL Ltd.,
Akishima-shi, Japan). Finally, the frequency responses of
FBAR devices with the biosensors were measured by
HP8720 network analyzer.
FBAR devices for biosensor applications
For biosensor applications of the FBAR, Au/Cr thin films
were deposited in the backside cavity of FBAR devices as
the detection layer using a dual-gun DC sputtering system
as shown in Figure 3. In the self-assembly monolayers
(SAMs) method, the Au surface was modified by adsorp-
tion of thiolate (CH3(CH2)nSH).
The SAMs method was performed as follows:

Step (1): Use oxygen plasma process for Au surface
cleaning.
Step (2): Inject cysteine solution (R.T., 1 h).
Step (3): Inject deionized (DI) water and dry using N2 gas.
Step (4): Inject glutaraldehyde solution (2.5%, R. T., 1 h).
Step (5): Inject DI water and dry with N2 gas.

Then, the surface modification of FBAR devices were
accomplished by the SMAs method. In the biosensors,
human IgE was detected by using a coating process to
detect antibody with antigen because of the high specifi-
city between antigen and antibody. Hence, the coating
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Si (100) Si3N4 Pt/Ti AlN Au/Cr
Figure 3 The schematic diagram of a biosensor.
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process was performed as described in the literatures as
follows [21-24]:

Step (1): Wash with 200 μl phosphate-buffered saline
(PBS) solution three times.
Step (2): Dip 200 μl diluted mouse anti-human IgE
antibody (37°C, 2 h).
Step (3): Inject 200 μl, Tween-20 wash buffer three times.
Step (4): Inject 200 μl, 10 wt.% bovine serum albumin
(BSA) solution (37°C, 0.5 h).
Step (5): Inject 200 μl, Tween-20 wash buffer three times.
Step (6): Inject 200 μl, diluted human IgE antigen with
0.707 μg/ml concentration.

In the backend process of step (2) to step (6), the sam-
ple were cleaned using DI water to remove excess liquid
and then dried with N2 gas. Figure 4 schematically depicts
the IgE antigen/IgE antibody/glutaraldehyde/the integrated
cystamine SAMs multilayer [20].
After the above SAMs and coating processes, the fre-

quency response was measured before and after anti-human
Figure 4 The schematic diagram for the integration of cystamine SAM
IgE antibody linked with the human IgE antigen. Finally,
the sensitivity (Sm) of the biosensor was calculated using
the following equation:

Sm ¼ lim
δm→0

δf
f

� �
1
δm

� �
;

where δm is the loading mass (9.1875 ng/cm2) and δf is
the variation of the resonate frequency. Finally, the sen-
sitivities of FBAR devices for human IgE detection were
investigated.

Results and discussion
Structural and morphological properties of AlN thin films
A highly c-axis orientation is the ideal piezoelectric prop-
erty of a FBAR device. According to the literature, a 34.5°
c-axis tilted piezoelectric thin film in FBAR device exits
strongly shear-mode transmittance [25]. The optimized
sputtering conditions for 23° c-axis tilted highly textured
AlN thin films were obtained in our previous report
[26], those were working pressure of 5 mTorr, substrate
, glutaraldehyde, IgE antibody and antigen multilayer.
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Figure 5 The θ-2θ X-ray scans of the AlN thin film.
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temperature of 300°C, sputtering power of 250 W, and
the off-axis of 50 mm. Figure 5 shows the c-axis preferred
orientation of AlN thin films with small full width at half
maximum (FWHM). Besides, Figure 6 shows the cross-
sectional images, which reveal columnar with 23°-tilted
AlN thin films.
Frequency responses of shear-mode FBAR devices
Figure 7 shows the frequency responses of the FBAR devices
with 23°-tilted AlN thin films, in which the longitudinal
mode and shear-mode exist at 2.07 (fL) and 1.175 GHz (fS),
Figure 6 The cross-sectional image of the AlN thin film.
respectively. The ratio of fL to fS can be determined from the
following relationship:

f L
f S

¼ V L

V S
¼

ffiffiffiffiffiffi
C33
ρ

q
ffiffiffiffiffiffi
C44
ρ

q ¼
ffiffiffiffiffiffiffiffi
C33

C44

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
395 Gpa
118 Gpa

s
¼ 1:83;

where VL and VS are the acoustic velocity, C33 and C44

are an elastic constant, and ρ is density of the wurtzite
AlN. In this study, the practical acoustic velocity of lon-
gitudinal mode is 1.76 times than that of the shear
mode, which is still consistent with the literature [25,27].
The electromechanical coupling coefficient (kt

2) of shear
mode is a numerical measurement of the conversion ef-
ficiency between electrical and acoustic energy in piezo-
electric materials. The kt

2 of the shear mode of the FBAR
was calculated to be about 3.18%.

Frequency responses of biosensors for human IgE
detection
The Au/Cr thin films were adopted as detection layer
using a dual-gun DC sputtering system, the oxygen plasma
process was used to clean the surface of the Au layer in
order to improve the hydrophilic properties of the contact
area between the bio-drop and Au layer [28-32].
Besides, the analysis methods were used for biosensor

in liquid and tiny mass detection in air through the shear
mode and longitudinal mode, respectively. Figure 8 shows
the frequency response of FBAR device in air and liquid
environment. The longitudinal mode almost disappeared
in liquid environment because of the decrease of quality
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Figure 7 The frequency response of a FBAR device without
Au/Cr coatings.

Figure 9 The frequency responses of biosensors for human IgE
detection, Device A and Device B.
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factor (Q) which reduces the mass resolution substantially,
whereas the shear mode maintains high readability.
However, the literatures mentioned that the large reflec-
tion coefficient of longitudinal mode in solid and liquid
interface which is the key factor result in the acoustic wave
vanished. Therefore, the shear mode propagating in solid
medium maintains its movement through a liquid envir-
onment [33-35]. The experimental and analytical results
indicate that the longitudinal mode is the key indicator to
identify the sensing environment, and the shear mode can
be exploited in biosensor applications. Hence, FBAR de-
vices with 23°-tilted AlN thin films are suitable for human
IgE detection.
In this study, two devices of biosensors for human IgE

detection were fabricated, and the frequency responses
are shown in Figure 9. In Figure 9, f0, f1, f2, f3, and f4 are
the resonate frequencies of the shear-mode FBAR de-
vices without loading, treated with the SAMs method,
1000 1500 2000 2500 3000 3500
-25

-20

-15

-10

-5

0

S 11
(d

B
)

Frequency(MHz)

in air
 in water

Figure 8 The frequency response of a FBAR device in air and
liquid environment.
combined with the anti-human IgE antibody, linked with
the human IgE antigen, and terminated with the anti-
human IgE HRP, respectively. The properties of shear-mode
FBAR device adopted for the coating mass detection are
demonstrated in Figure 9. In some literatures, the resonant
frequency were also used to confirm the coating mass
adhered on FBAR devices [20,36].
Besides, after repeated testing, the variation of fre-

quency response of the same device exhibited a tiny
error of ±0.01%. In the bio-processes, the resonate fre-
quency decreased the range of about 10 MHz which re-
sults from the bio-processes effect as SAMs, IgE antibody,
IgE antigen, and HRP are added to the biosensor area.
Figure 10 shows the variations of resonate frequency
step by step from f0 to f4. It is confirmed that the mat-
ters have mutual bonding when coated on biosensor.
However, the standard IgE reagent exist possible error
value of ±0.5% in environment according to the official
test reports and the enzyme-linked immunosorbent assay
(ELISA).
To calculate the sensitivity (Sm) of the shear-mode FBAR

devices for human IgE detection, the Sm is calculated by



Figure 10 The variations of frequency response step by step
from f0 to f4, Device A and Device B.
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Sm ¼ lim
δm→0

δf
f

� �
1
δm

� �
. Table 1 shows the calculated sensi-

tivities for human IgE detection of two biosensor de-
vices. The average sensitivity calculated for the shear-
mode FBAR devices for human IgE detection was about
1.425 × 105 cm2/g.
The results of this study demonstrate that the proposed

shear-mode FBAR device is highly promising for use in
human IgE detection because of its high sensitivity, small
size, low-cost, and rapid reaction process than conven-
tional quartz crystal micro-balance (QCM) [37-41].

Conclusions
This study fabricated shear-mode FBAR devices for bio-
sensor applications. The AlN thin films and Pt/Ti were
adopted as the piezoelectric and electrode layers, respect-
ively, in FBAR devices. The AlN thin films were fabricated
Table 1 The frequency shift and sensitivity of biosensors

Device A Device B

Frequency shift, δf (MHz) 1.62 1.687

Sensitivity, Sm (cm2/g) 1.41 × 105 1.44 × 105
at a working pressure of 5 mTorr, substrate temperature
of 300°C, sputtering power of 250 W, and off-axis of
50 mm. The resulted AlN thin films exhibited a strong
c-axis orientation and 23°-tilted. The obtained shear-mode
FBAR devices had a frequency response of 1.175 GHz
and a kt

2 of about 3.18%. For biosensor applications, the
Au/Cr thin films were deposited on backside cavity of
FBAR as bio-detection layer. The SAMs method was
used for surface modification of Au thin films. Human
IgE was detected by using a coating process to detect
antibody with antigen. The average sensitivity for the
shear-mode FBAR devices for human IgE detection was
about 1.425 × 105 cm2/g.
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